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Q'=x3—x3=-Q. So N is a negautomorph of Q. In
general, the product of two negautomorphs is an
automorph.

Minkowski plane

Consider the two-dimensional space-time spanned
by a, and a,. Its points x=x,a,+ x,a, are called
‘events’ and have a space and a time coordinate (r, t).
Multiplying the time coordinate by the speed of light
¢ (normalized to 1), it also becomes a space coordi-
nate. So we can put x, = r, x, = ¢t = t. Lorentz transfor-
mations L are linear transformations in the space-
time leaving the light velocity invariant and thus also
the value xij—x3. A light wave propagates along
events for which one has x, = +x,. Accordingly, a, =
a, are called light directions, where a, is along the
space axis and a, along the time axis. Note that the
metric tensor g,,=a,°a, =1, g,,=a,ca,=-1, g,=
a,ca,=0is left invariant by the Lorentz transforma-
tion L which is therefore a hyperbolic rotation of the
Minkowski plane. The scaling transformation
induced by L along the light cone corresponds to the
red shift (dilatation) or to the blue shift (contraction)
of a light wave emitted from a moving source.
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Abstract

An efficient procedure for calculating the contribution
of the thermal diffuse scattering to the absorptive
form factor is outlined. For an isotropic Einstein
model all integrations could be performed analyti-
cally by using suitable functions to fit the elastic
electron scattering amplitudes. The result is cast into
a function subroutine which is available upon request.
Computed values are compared with previous calcu-
lations and with measurements.

1. Introduction

The quantitative interpretation of electron diffraction
patterns requires a comparison of the recorded pat-

0108-7673/91/050590-08$03.00

terns with calculations (Steeds, 1983). To perform a
computation the Fourier coefficients of the lattice
potential must be known. In a first approximation
one considers only elastic scattering. In practice,
however, inelastic processes scatter electrons out of
the Bragg reflections into the background causing an
attenuation of the reflections. The removal of elec-
trons from the Bragg reflections can be described as
an absorption. This absorption together with the
increased background very severely affects the con-
trast in diffraction patterns, especially in the case of
high-Z materials. The attenuation of the reflections
can be incorporated into the dynamical theory by
adding an imaginary part to the crystal potential
(Yoshioka, 1957). The calculation of the diffuse back-

© 1991 International Union of Crystallography
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ground is more difficult (Rossouw & Bursill, 1986)
and will not be attempted here. Thus, if absorption
is included, each Fourier coefficient U, consists of

two parts
Ug= V,+iV,, (1)

where V, denotes the Fourier coefficient of the (real)
lattice potential V(r) and V, the absorption arising
from inelastic scattering. In the actual computations
one must use certain estimates for V., since these
quantities are very difficult to calculate. Up to now
only very rough approximations have been used. For
example, Hashimoto, Howie & Whelan (1962)
assume that the ratio V,/V, has the constant value
of 0-1 for all g. We show that by applying a simple
physical model more realistic estimates of V can be
obtained and, moreover, V, and V; can be computed
using the same small set of atomic parameters.

An excellent approximation of V, can readily be
obtained by neglecting the influence of binding effects
onto the outermost atomic electrons. Then V, is given
by

amh? .
‘b %eXP [—igmi] exp [-Mig*1£i(g).

(2)

In this equation V,, denotes the volume of the unit
cell, m the rest mass of the electron, g a reciprocal-
lattice vector, 7, the position of the atom k in the
unit cell and f, the atomic scattering amplitude in
the first-order Born approximation, respectively. The
exponent in the Debye-Waller factor is abbreviated
as M, =3(u?), where (u3) is the mean square of the
thermal displacement of atom k.

The main problem in calculating Uj is the absorp-
tive part, because there are several processes causing
absorption. The most important processes are thermal
diffuse scattering (TDS), plasma losses and core exci-
tations:

1 1(TDS) r(Plasma) 1Core
V= viTos 4 v + vicore,

(3)

A quantitative calculation of these processes would
be very complicated because their solid-state nature
has to be taken into account. To avoid this difficulty
and to obtain an idea of the influence of absorption
on the diffraction patterns one is interested in simple
models and calculation procedures.

TDS is the major contribution to Vj, except for
V. Therefore the plasma losses and core excitations
are usually neglected

V;z V;(TDS) if g # (. (4)

The calculation of the influence of TDS can be sim-
plified by applying the Einstein model. In this
approximation the thermal vibrations of individual
atoms are statistically independent of each other. This
procedure allows one to express Vg as

2
V=275 exp [—ignd exp [~ Mig’)/4(g). (5)
2mV,
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It should be noticed that V, and V; are given by
similar formulas. The only difference is that for the
calculation of V, the atomic elastic scattering ampli-
tude f(g) is required and for the calculation of V,
one needs the so-called absorptive form factor f'(g),
which is also an atomic quantity. If one has a simple
procedure to evaluate these quantities for every atom,
one can very efficiently calculate V, and V, for every
crystal.

The elastic scattering amplitudes are well known
and standard values have been published for f(s),
where s = g/47 (e.g. Doyle & Cowley, 1974). Nowa-
days it is more convenient to use computer algorithms
rather than tables to calculate scattering amplitudes.
For this reason several attempts have been made to
fit or interpolate the tabulated values. The classical
fit function proposed by Doyle & Turner (1968) is a
superposition of Gauss functions. As the asymptotic
behaviour of the elastic form factor is proportional
to s 2, the Gaussian fit is very inaccurate for large
values of s. In practice this fit should not be used for
s>2A7"

The determination of the absorptive form factor is
more complicated since f'(g) is given by the integral
representation (Hall & Hirsch, 1965)

f'(g)=1/k) [ d*qf(q)f(q—g)(exp [-Mg’]
—exp{-M[q’—(q—2)°1}), (6)

where k denotes the wavenumber of the incident
electron and #q is the momentum transferred to the
crystal. The standard method is to perform this
integration numerically. This has been done for
example by Radi (1970) who published some values
of U, for a small variety of crystals. But in practice
this is a very cumbersome method since the integra-
tion requires significant computing time. A practi-
cable alternative has been proposed by Bird & King
(1990). They calculated f'(s) numerically on a grid
of s and M values. The results are stored in a dataset
and used to interpolate the values which are actually
required. Another idea is to perform the integration
analytically. This has been done by Buxton &
Loveluck (1977). Their results are not very accurate
since they used the interpolation formula of Doyle
& Turner (1968) as an analytical representation for
the elastic scattering amplitudes for all s.

We propose an empirical analytical expression for
the scattering amplitudes which is well suited for our
purposes. If one writes f(s) as

f(S)=S'2}:A.»[l—exp(-B.sz)] (7)
it is possible to fit the scattering amplitudes very
accurately for all values of s<oo. Moreover, the
integration can be performed analytically allowing a
fast evaluattion of f'(g).

The same type of formula can be obtained by
applying the Mott formula to standard fit functions
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for X-ray scattering amplitudes, which are given as
a sum of Gauss functions plus a constant. We want
to stress the point that X-ray fit functions must not
be used, because electron scattering amplitudes com-
puted by means of the Mott formula from X-ray
scattering amplitudes are very incaccurate for small
values of s (Peng & Cowley, 1988). We have avoided
this problem by fitting the functions in (7) directly to
the elastic scattering amplitudes for electrons.

2. The elastic scattering amplitudes

A reliable fit function should be precise for all values
of s in the interval [0, o]. In order to obtain accurate
values for the fitting coefficients we used the following
two methods.

The function was fitted to the standard values of
electron scattering amplitudes. For 58 atoms Doyle
& Cowley (1974) have reported data for s <6 A™',
for the remaining atoms data are available only for
s=2A~'. For these atoms the missing values have
been obtained by applying the Mott formula to the
X-ray scattering amplitudes of Fox & O’Keefe (1989).
As input to the fitting procedure we selected eighteen
values at s =0-0, 0-1, 0-2, 0-3, 0-4, 0-5, 0-6, 0-8, 1-0,
1-4, 16, 1-8, 2-0, 2-5, 3-0, 4-0, 5-0, 6-0 A~'. This
selection ensures the correct behaviour of the fit func-
tion for s<6 A"

To include the correct asymptotic behaviour of f(s)
for large values of s we consider that the elastic
scattering amplitude is the Fourier transform of the
electrostatic potential. Therefore the shape of f(s)
for large s depends on the potential near the nucleus.
In this region the potential can be approximated by
a screened Coulomb potential. Thus the asymptotic
behaviour of the scattering amplitude for large s is
Lorentzian and can be written as

lim f(s)=0-02395Z A7/ (s*+a?), (8)

where a is a function of the screening length. We
observed that the simplified form

f(s)=0:02395Z A7/’ 9)
is a good approximation of the tabulated values at
s =6 A", Since the asymptotic behaviour for large s
of our fit function is given by

lim f(s) = s> % A, (10)

the coefficients A; must fulfil the condition

YA =0:02395Z A! (11)
to obtain the correct asymptotic shape.

The calculations have shown that seven fit param-
eters are sufficient for a good approximation. The
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corresponding fit function is given by

6
f(s)=s57 T All-exp(-Bs’)] (12)
i=1
where
A =A=A;, Ay=A;= A (13)
and, in order to fulfil (11),
A, =0:02395Z A7'/3(1+ V),  A,=VA,. (14)

The seven parameters B; (i=1,...,6) and V have
been subjected to the fitting procedure. The results
which are given in Table 1 show that the maximum
relative error is smaller than 4% for all elements
except He and Li. In order to give some characteristic
examples the fit functions for Mg and O are depicted
in Fig. 1.

3. The absorptive form factor

The specific represention of the elastic scattering
amplitudes given in (5) allows an analytical evalu-
ation of the absorptive form factor. The resulting
formula which has been implemented in the Fortran
subroutine FSCATT is given in the Appendix. The
details of the calculation are given elsewhere
(Weickenmeier, 1990).

To check the accuracy of our calculation a com-
parison of our results with some theoretical and
experimental values is shown in Table 2. Bird & King
(1990) used the same elastic scattering amplitudes to
compute the absorptive form factor. Therefore the
two results show excellent agreement. The values
derived by Radi (1970) are somewhat different
because he used non-relativistic scattering amplitudes
computed from a Hartree-Fock-Slater atomic model.
The comparison of the theoretical and experimental
results demonstrates that the rough approximation of
the Einstein model yields useful estimates for V.o,
except for Cu and Au. The latter discrepancies cannot
be explained by erroneous (u°) data because these
have hardly changed since Radi’s paper appeared (cf.
Schober & Dederichs, 1981).

Large discrepancies occur for V;. This behaviour
is not surprising since Vj is largely dominated by
plasmon scattering, whereas we have only considered
TDS. However, since V| attenuates all reflections in
exactly the same way, it does not affect the relative
intensity of the Bragg spots.

4. Subroutine FSCATT

This subroutine which has been programmed in stan-
dard Fortran77 is specified as the complex function
FSCATT(G, UL, Z, SYMBOL, ACCVLT, ABSFLG,
ACCFLG, DWFLG).



A. WEICKENMEIER AND H. KOHL

593

Table 1. The fitting coefficients for the elastic scattering amplitudes as defined in (10), (11) and (12)

The units of B; are A2, the units of s are A~!. The maximum relative error e of the fit function given in percent is shown in the last

column and in the last but one column the s value where it occurs.

Z | Symbol \Y% B, B, B3 By By Bg s e

2 He 0.5 2.542E400 | 8.743E+400 | 1.269E+01 4.371E-01 5.294E+400 | 2.825E+01 3.0 | 6.2

3 |Li 0.5 6.845E-01 | 3.065E4+00 | 6.240E+00 1.262E+402 1.312E+402 1.318E+02 | 2.5 4.2

4 Be 0.3 5.400E-01 | 3.388E+400 | 5.562E+01 5.078E+01 6.701E+01 9.637E+01 3.0 | 3.4

5 B 0.5 3.314E-01 2.975E+400 | 3.401E+01 3.598E+01 3.668E+401 6.081E+401 1.8 | 24

6 C 0.5 2.946E-01 | 3.934E+00 | 2.498E+01 2.528E+01 2.547E+01 4.670E+01 0.8 2.4

7 N 0.5 2.393E-01 | 4.935E+00 | 1.812E+01 1.570E+01 1.582E+01 4.024E+01 2.5 2.0

8 O 0.5 6.376E4+00 | 8.037E+00 | 2.721E+01 1.116E-01 3.869E-01 1.090E+01 3.0 1.7

9 F 0.5 2.180E--01 6.770E+400 | 7.051E+400 | 6.675E400 1.238E+401 2.808E+01 1.0 1.7
10 Ne 0.5 2.006E-01 5.498E4+00 | 6.281E+00 | 7.192E+400 | 7.548E+00 | 2.326[£401 1.0 | 2.7
11 Na 0.5 2.190E-01 5.300E+00 | 5.319E4+00 | 5.283E+00 | 5.285E+400 1.282E+02 1.0 2.5
12 Mg 0.5 1.976E4+00 | 2.809E+00 | 1.639E+01 5.494E-02 | 2.061E+00 1.217E402 | 0.3 2.2
13 Al 0.4 2.297E+00 | 2.358E+00 | 2.499E+01 7.462E-02 5.595E-01 1.285E+02 | 3.0 | 2.8
14 Si 0.5 1.737E4+00 | 3.043E+00 | 3.057E+01 5.070E-02 9.918E-01 8.618E+01 2.5 1.4
15 P 0.5 1.795E-01 2.632E+00 | 2.676E+00 | 3.457E+01 3.678E+01 5.406E+01 1.4 3.6
16 S 0.5 1.006E+00 | 4.904E+400 | 3.135E+01 3.699E-02 9.870E-01 4.494E+01 3.0 2.0
17 Cl 0.5 1.846E-01 1.480E+00 | 5.210E+00 | 2.479E+01 3.206E+01 3.910E+01 1.6 | 3.4
18 | Ar 0.5 2.006E-01 | 6.533E+400 | 2.272E+401 | 1.200E+400 | 1.274E+400 | 3.626E+01 | 3.0 | 2.6
19 | K 0.2 4.442E-01 | 3.367E+00 | 1.963E+01 1.824E-02 | 2.351E+401 | 2.129E+402 | 0.8 | 2.6
20 Ca 0.3 1.827E-01 2.066EE+00 1.699E+01 1.158E+01 1.398E+01 1.861E+402 1.8 | 3.9
21 Sc 0.5 1.425E-01 1.466E400 | 1.547E401 4.243E+400 | 9.804E+00 1.215E402 1.8 | 2.8
22 Ti 0.5 1.278E-01 1.456E400 | 1.210E401 4.617E+4+00 | 1.197E+01 1.050E+02 1.8 | 3.2
23 \% 0.5 1.313E-01 1.399E+400 | 8.008+00 | 7.981E+00 1.341E+401 9.531E+01 1.8 2.1
24 Cr 0.5 1.231E-01 2.384E+400 | 9.921E+00 1.648E+400 | 1.100E+401 6.846FE401 0.1 3.1
25 Mn 0.5 4.817E-01 3.783E+00 | 8.473E+00 4.690E-02 | 8.745E+400 | 7.744E+01 2.5 1.4
26 Fe 0.5 4.470E-01 6.894E4-00 | 6.903E+00 5.691E-02 | 3.026E+00 | 7.087E+01 0.1 1.3
27 | Co 0.5 1.071E-01 | 3.636E+400 | 7.558E+00 | 1.280E+400 | 5.140E+400 | 6.716E+01 | 0.1 2.6
28 Ni 0.5 1.107E-01 1.619E+400 | 6.003E+400 | 5.975E+400 | 6.060E+00 | 5.941E+01 2.5 1.7
29 Cu 0.5 1.129E-01 1.891E+400 | 5.085E400 | 5.073E+400 | 5.099E+400 | 4.639E+401 0.1 2.5
30 | Zn 0.5 1.021E-01 1.734E400 | 4.783E+400 | 4.807E+400 | 5.645E400 | 5.122E+01 2.5 2.4
31 Ga 0.5 1.064E-01 | 1.537E+00 | 5.138E+400 | 4.743E+400 | 5.000E+4+00 | 6.143E+01 | 0.1 1.8
32 | Ge 0.5 9.583E-02 | 1.677E400 | 4.703E+400 | 2.912E+400 | 7.870E+00 | 6.494E+01 | 0.0 | 2.3
33 | As 0.5 | 9.428E-02 | 2.214E+00 | 3.951E+400 | 1.521E+400 | 1.581E+01 | 5.241E+01 | 0.4 | 2.2
34 | Se 0.5 9.252E-02 | 1.602E+400 | 3.049E+400 | 3.185E+400 | 1.894E+01 | 4.763E+01 | 2.5 1.7
35 Br 0.5 9.246E-02 | 1.773E+400 | 3.481E+400 | 1.884E+00 | 2.269E+01 4.069E+01 2.0 1.5
36 | Kr 0.5 4.932E-01 | 2.083E+400 | 1.141[401 3.333E-02 | 2.097E+400 | 4.238E+01 1.0 1.8
37 | Rb 0.2 1.580E-01 | 1.715E400 | 9.392E400 | 1.675E+400 | 2.359E+01 1.525E+02 1.6 | 3.3
38 Sr 0.3 3.605E-01 2.128E400 1.246E+01 1.526E-02 | 2.108E+00 1.332E402 2.5 1.9
39 Y 0.5 9.003E-02 1.414E+400 | 2.053E+400 1.026E+01 1.075E+01 9.0641+4-01 0.1 3.3
40 Zr 0.5 1.009E-01 1.154E+400 | 2.347E+400 | 1.058E+01 1.095E+401 8.282E+01 0.0 2.4

The elastic scattering amplitude will be returned
as the real part of FSCATT, the absorptive form factor
as the imaginary part, respectively. Moreover, the
atomic symbol SYMBOL will be returned. The input
parameters are the modulus G of the reciprocal-

lattice vector g, the root-mean-square value UL of
the thermal displacement (u”)'/?, the atomic number
Z and the acceleration voltage ACCVLT in kV. Three
logical parameters have control functions. Only if
ABSFLG is true will the absorptive form factor be
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Table 1 (cont.)

Z | Symbol | V B B B; B, Bs Bs | s | e
41 Nb 0.5 9.243E-02 1.170E+4-00 5.940E+4-00 1.306[£+4-00 1.343E+4-01 6.637E+401 0.1 2.7
42 Mo 0.5 4.354E-01 1.248E+00 7.454E4-00 3.543E-02 9.914E+400 6.172E+401 0.1 2.2
43 Tc 0.5 4.594E-01 1.182E+400 | 8.317E+00 3.226E-02 | 8.323E+4-00 | 6.498E+-01 0.1 1.9
44 Ru 0.4 8.603E-02 1.396 E+400 1.170E+01 1.396E+400 3.452E+00 5.556 401 2.5 3.7
45 Rh 0.5 9.214E-02 1.113E+400 7.658E+400 1.126E+00 8.325E+4-00 4.838E+01 1.8 2.2
46 Pd 0.5 9.005E-02 1.125E+00 9.698 400 1.085E+4-00 5.709E+4-00 3.349E+01 2.0 2.3
47 Ag 0.5 8.938E-02 3.191E+4-00 9.100E+-00 8.090E-01 8.144E-01 4.134E4-01 2.0 2.4
48 Cd 0.3 2.885E-01 1.613E+400 8.997E+400 1.711E-02 9.467E+400 5.813E+401 3.0 1.6
49 In 0.4 8.948E-02 1.233E+4-00 8.231E+400 1.224E4-00 7.062E400 5.970E+401 2.0 2.5
50 Sn 0.6 7.124E-02 8.553E-01 6.401E400 1.336E4-00 | 6.382E+400 | 5.092E+01 2.5 2.5
51 Sb 0.6 3.575E-01 1.325E+400 6.517E+400 3.550E-02 6.519E4-00 5.081E401 0.0 1.2
52 Te 0.6 5.009E-01 3.953E+4-00 | 7.628E+00 3.005E-~02 5.074E-01 4.963E+01 0.1 0.6
53 1 0.4 8.429E-02 1.130E+00 | 8.862E+00 1.130E+400 | 9.132E400 | 5.602E+401 2.5 2.5
54 Xe 0.4 2.780E-01 1.621E+400 1.145E401 2.032E-02 | 3.275E+400 5.144E+401 1.4 1.4
55 Cs 0.1 1.204E-01 1.537E+400 9.816E+400 4.122E+401 4.262E+401 2.243E+402 1.8 2.9
56 Ba 0.1 1.223E-01 1.449E+00 9.502E+00 4.941E401 7.495E+4-01 2.170E402 1.8 2.6
57 La 0.3 8.930E-02 1.262E4-00 8.097E+00 1.203E+4-00 1.766E+01 1.166E402 2.5 2.9
58 Ce 0.3 | 8.504E-02 1.283E+00 1.122E+01 1.327E400 | 4.610E+400 1.122E+402 2.5 3.2
59 Pr 0.2 9.805E-02 1.526E+00 8.590E4-00 1.239E+400 2.249E+4-01 1.400E+02 2.5 3.0
60 Nd 0.2 9.413E-02 1.266E+400 5.988E+00 1.779E+401 1.814E+01 1.326E+02 2.5 3.3
61 Pm 0.2 9.447E-02 1.251E+400 5.912E+00 1.629E4-01 1.673E+01 1.279E+02 2.5 3.1
62 Sm 0.2 9.061E-02 1.593E+00 1.064E+-01 1.789E+00 | 2.221E+400 1.246F 402 2.5 3.3
63 Eu 0.1 1.049E-01 1.544E400 | 8.652124-00 | 7.093E+00 5.337E+01 1.837E+02 2.5 2.7
64 Gd 0.2 9.338E-02 1.387E+400 | 7.359E+400 1.551E400 2.082E+01 1.110E+02 2.5 2.2
65 Tb 0.1 1.019E-01 1.524E+4-00 7.169E+4-00 2.08612401 4.929E+4-01 1.661E+4-02 2.5 2.7
66 Dy 0.2 8.402E-02 1.409E+00 7.140E+400 1.348E+00 1.142E401 1.080E+4-02 3.0 2.7
67 Ho 0.1 9.441E-02 1.618E+00 6.271+400 4.035E£4-01 4.283E+01 1.306E+402 2.5 2.9
68 Er 0.2 8.211E-02 1.251E400 4.812E4-00 1.084[£+01 1.090E+01 1.001E402 2.5 2.6
69 Tm 0.1 9.662-02 1.602E+400 5.675E4-00 3.059[401 3.113E+01 1.387F.+02 2.0 2.4
70 Yb 0.1 9.493E-02 1.602E+400 5.439E+00 2.831E+01 2.928E+01 1.381E+402 2.0 2.6
71 Lu 0.1 9.658E-02 1.568E+00 5.322E+400 3.418E+01 3.525E4-01 1.214E4-02 1.8 2.3
72 Hf 0.1 9.294E-02 1.555E4+00 | 5.251K+400 | 3.752E+401 3.888E+01 1.052E+02 1.8 2.6
73 Ta 0.4 6.298E-02 8.195E-01 2.891E+4-00 5.543E4-00 5.981E4-00 5.442E+401 0.1 2.5
74 w 0.2 7.902E-02 1.371E+400 8.234E+400 1.383E+4-00 1.392E+400 7.712E+401 2.5 2.3
75 Re 0.5 5.266E-02 9.072E-01 4.438L£4-00 9.459E-01 4.375E+00 4.398[£401 0.2 2.3
76 Os 0.4 2.270E-01 1.570E+00 | 6.345E+400 1.564E-02 1.618E+00 | 4.616E+01 0.1 1.5
77 Ir 0.5 5.055E-02 8.677E-01 5.093E+400 8.812E-01 3.569E+400 3.977E401 3.0 2.2
78 Pt 0.5 5.253E-02 8.377E-01 3.959E400 8.152E-01 6.442E 400 3.421E401 0.0 1.8
79 Au 0.4 5.493E-01 1.728E+400 6.720E4-00 2.637E-02 7.253E-02 3.546E401 0.2 1.1
80 Hg 0.4 2.194E-01 1.416E+00 6.682E+400 1.472E-02 1.576 400 3.716L+-01 0.2 1.2

calculated. Both the elastic scattering amplitude and
the absorptive form factor depend on the acceleration
voltage. For a given acceleration voltage the former
must be multiplied by the relativistic factor 1y, the
latter by y?/ k. If ACCFLG is true, this will be done.
DWFLG controls whether or not the elastic scattering

amplitude should be multiplied by the Debye-Waller
factor exp (—Mg?).

The program has about 550 lines of source code
and the size is less than 20 kbytes. Only single
precision is used. There are no special hardware
requirements.



A. WEICKENMEIER AND H. KOHL

595

Table 1 (cont.)

Z Symbol \Y 81 82 Bg B4 B5 BG S €
81 | T1 0.4 | 2.246E-01 | 1.128E+400 | 4.303E+400 | 1.485E-02 | 7.156E+00 | 4.309E+01 | 0.1 | 1.9
82 | Pb 0.3 | 6.4326-02 | 1.194E+400 | 7.393E+00 | 1.142E+400 | 1.289E+00 | 5.113E401 | 2.5 | 1.8
83 | Bi 0.4 | 5.380E-02 | 8.672E-01 | 1.875E+00 | 7.648E+00 | 7.868E+00 | 4.564E+01 | 3.0 | 1.9
84 | Po 0.4 | 5.011E-01 | 1.638E+400 | 6.786E4+00 | 2.187E-02 | 8.602E-02 | 4.673E+01 | 0.1 | 1.0
85 | At 0.4 | 2.232E-01 | 1.108E+400 | 3.591E400 | 1.011E-02 | 1.164E+401 | 4.507E+401 | 3.0 | 1.2
86 | Rn 0.4 | 2.115E-01 | 1.140E+00 | 3.415E400 | 1.188E-02 | 1.341E+401 | 4.311E+401 | 1.8 | 1.1
87 | Fr 0.1 | 9.435E-02 | 1.026E+00 | 6.255E+00 | 3.251E401 | 3.629E+01 | 1.491E402 | 2.0 | 3.1
88 | Ra 0.2 | 7.300E-02 | 1.018E400 | 5.896E+400 | 1.031E400 | 2.037E+01 | 1.153402 | 2.0 | 2.9
89 | Ac 0.2 | 7515E-02 | 9.494E-01 | 3.725E+400 | 1.75813401 | 1.975E401 | 1.091E402 | 2.0 | 2.8
90 | Th 0.3 | 6.385E-02 | 9.019E-01 | 4.657E+400 | 9.025KE-01 | 1.571E+01 | 8.370E401 | 0.1 | 2.2
91 | Pa 0.2 | 7.557E 02 | 8.492E-01 | 4.010E+00 | 1.695E+401 | 1.779E401 | 1.002£402 | 2.0 | 2.7
92 | U 0.2 | 7.142E-02 | 1.149E+00 | 9.212E+400 | 9.592[5-01 | 1.203E400 | 1.043E402 | 2.5 | 2.4
93 | Np 0.2 | 6.918E-02 | 9.810K-01 | 5.954E+400 | 9.909E-01 | 2.206E+01 | 9.098E+01 | 2.5 | 3.0
94 | Pu 0.2 | 7.136E-02 | 9.577E-01 | 6.132E400 | 9.744E-01 | 1.567E+01 | 8.987E+401 | 2.5 | 2.7
95 | Am 0.2 | 7.301E-02 | 9.327E-01 | 6.348E+00 | 9.103E-01 | 1.326E401 | 8.686E+01 | 2.5 | 2.4
96 | Cm 0.3 | 5.778E-02 | 7.227E-01 | 3.011E+400 | 9.219E400 | 9.534E+00 | 6.587E+01 | 0.1 | 3.2
97 | Bk 0.2 | 7.088E-02 | 7.759E-01 | 6.143E+00 | 1.790E+00 | 1.512E401 | 8.357E+401 | 0.1 | 3.1
98 | Cf 0.3 | 6.164E-02 | 8.136E-01 | 6.562E+00 | 8.381E-01 | 4.189E+00 | 6.141E+01 | 2.5 | 2.4
22 The source code can be obtained by electronic
t (s) 204 0 mail without any charge by contacting the
(&) o] mail address XLTODA6L@DDATHD21.BITNET.
' Otherwise the program is distributed on a 5; in floppy
12 disk for IBM PCs or compatibles running under MS-
101 J DOS. In this case there will be a small charge of
gvg US $20 to cover postage and handling.
O:L x10
0.2 5. Concluding remarks
0'00,0 10 20 30 L0 50 60 We have shown that the Fourier coefficients U, of
s [R] the lattice potential can be calculated using only a
small set of fitting parameters. Thermal diffuse scat-
ta) tering has been taken into account, while the influence
60 gf plasmon scattering and core excitation .has l?een
(s ’ Mg ignored. A crystal model has been used \'thlCh d1§re-
(A] 50 gards solid-state effects on the electrostat}c potentials
of the crystal atoms and ignores correlation between
L0 ‘ the thermal motions of the individual scatterers. Des-
304 | pite this neglect the elastic scattering part V, of U,
J is obtained very accurately and a reliable estimate of
2014 5 the absorptive part V} is found in most cases. Because
104 any improvement would require extensive calcula-
tions the Einstein model is the state of the art. Up to
0o T A S ' now even the evaluation of this model has been
00 10 20 30 L0 50 6.0 . . .
S1A7] tedious. Our calculation procedure, which has been
implemented in a Fortran subroutine, allows a very
(b) efficient evaluation of both V, and V. With this

Fig. 1. A comparison of the fitted elastic scattering amplitudes
f(s) (solid lines) and the tabulated values (triangles) of Doyle
& Cowley (1974) for (a) oxygen and (b) magnesium.

procedure the calculation of electron diffraction pat-
terns will be more precise than those computed by
previous methods.
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Table 2. A comparison of theoretical and experimental
data for the absorptive part V for different crystals

The acceleration voltage is 100kV, the temperature is 300 K.
Column 1 shows the material, column 2 the hkl indices of the
reciprocal-lattice vector g, columns 3-8 the results for V, in eV.
The data are taken from (1) present work; (2) Bird & King (1990);
(3) Radi (1970); (4) Hashimoto (1964); (5) Reimer & Wichter
(1980); (6) Doyle (1970); (7) Goringe (1966); (8) Renard, Croce,
Gandais & Sauvin (1971); (9) Meyer-Ehmsen (1969); (10)
Goodman & Lehmpfuhl (1967); (11) Gaukler & Graff (1970).
References 4-11 were taken from Reimer (1984). The values of
(u?) are the same as those used by Radi (1970); {(u?) (A7Y)=
0-015 (Al), 0-0069 (Cu), 0-0074 (Au), 0-0045 (Si), 0-0091 (Ge),
0-0038 (MgO) and 0-019 (NaCl).

Theory Experiment
Al 000 019" 020> 0-16° 037* 0-60° 0-54°
1 017" 017”7 015 023* o017°
220 014" 015° 013 o1
31 013t 013 0122 0a13°
Cu 000  0-88' 089 075 1487 135°
1 082" o8> 071> 081’
200 0-80' 0-79° 070 0927
220 072" 0717 064>  0-49°
311 066'  066° 060>  0-45°
Au 000 345" 3.437  3.04° 2.64°
220 293" 2917 273 2.00°
331 238 2377 2277 1.62°
440  1-90' 1-89° 186>  1-50°
Si 000 012" 010 0-68°  0-62°
220 0-10'  0-09° 0-11°  0-14°
311 007" 006’ 0-08°  0-08°
422 009" 0-08 0-08°
Ge 000 071" 053} 1-25°
220 063" 0-49° 0-52°
400  0-56' 0.45°
422 0-50' 0-42° 0-36°
MgO 000 013" 010’ 1-50'°
200 o011 010 013"
NaCl 000 023" 0-20°
200 019 017 021"
420 014 0-15"
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cussions. One of the authors (HK) is indebted to
several colleagues (Professor D. van Dyck, Professor
H. Lichte, Professor K. Urban, Dr P. Stadelmann)
for suggesting the problem to him. Support by the
Stiftung Volkswagenwerk is gratefully acknowledged.

APPENDIX

Here we want to present the result for the absorptive
form factor. By inserting (7) in (6) we obtain

f1(8)=k™"T AAlexp (-Mg)I}(g)+I}(M, g)),
LJ (15)
with the abbreviations
Ii(g)={[d’a/q’(q—g)*]
x{1—exp[~Bg’]-exp[-Bi(q—g)’]

+exp [-Bg’- Bi(q—g)’]}. (16)

COMPUTATION OF ABSORPTIVE FORM FACTORS

I(M, g)=[[d’q/ 4*(q—2)*)(exp {-M[q*+ (q—g)’]}
—exp[—(B;+M)q’~M(q-g)’]
—exp [~ Mq®>~(B,+ M)(q-g)’]
+exp [~ (B;+ M)q’~(B;+ M)(q—g)’]).
(17)
The integration yields the following expressions:
g=0:

B, + B, B, + B,
I}j(g)=7r{B,»ln A’+lenT’} (18)
i J
B,+B.+2M
I3(M. o) = + —J
(M, g) W{(B. 2M)In B.+2M
B;+B +2M 2M
+BIn——2""Z12MIn ———}
B, +2M B+2M

(19)
g#=0:

I(g)=(m/g") {2(: +In (Big?) +In (Bg?)

—2Ei(
BZ

E
[ '(B +8°%

g)+eXP[ Bg?]

) - Ei(Bg?)

+exp [-Bg’]

B? T
X [Ei(Bi +’B4 gz) - Ei(B,gz)_ } (20)
I3(M, g) = {E[ M;’i;g)gzj
+2E[ M(B+M) 2]
B+2M
_ZEi[_(Bi+M)(B,+M) 2]
B+ B,+2M

—2Ei(-3Mg?) +exp [- Mg?)

2
x | 2Ei(;Mg? —E'(* :
[ izMg") ~Ei\ g 8

—Ei(—lwz—gz)]+exp[—(B~+M)g2]
B;+2M '
x{Ei[—(B' ) gz]

B+ B,+2M

B+ M) | 5
—Ei[(Bﬁr?MLg ]]+6Xp[—(13j+M)g]

2
S UL
B,+B. +2M

e[z

B +2M (21)
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Here Ei(x) denotes the exponential integral function
defined as

x<0: Ei(x)= | (e'/1)dt

x>0: Ei(x)=—lim(_]E+T)(e_'/t)dt (22)

e>0 \—x

and C =0-577215 ... is the Euler constant.
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The Interpretation of Raw Diffractometer Data
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Abstract

Statistical analysis reveals that the X-ray background
rigorously follows a counting statistical distribution
provided the measurements are made under truly
fixed-time conditions in a small (sin #)/A interval.
The operational procedures to ensure this are not
trivial. First, the design of, for example, the Enraf-
Nonius CAD-4 diffractometer is such that measure-
ments made at constant scan speed at different Bragg
angles may have somewhat different measuring times.
Failure to correct for this leads primarily to an
increase in the variance of the data. Second, the use
of a rapid prescan followed, when appropriate, by a
slower main scan leads to a set of prescan data biased
towards overestimates of background values and
underestimates of raw intensities. The effort needed
to extract from the data unbiased estimates of
averages and variances of the X-ray background is
rewarding. It can lead to a lowering of the standard
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deviation of a net intensity by up to one order of
magnitude. This in turn means that many more
intensities of weak reflections are reliably estimated
and are hence worth including in the structure deter-
mination. This obviously leads to increased model
accuracy. An example is given. A change in measuring
procedure is recommended which will increase the
efficiency of the standard background-peak-back-
ground procedure.

Introduction

The present standard data-reduction procedure oper-
ates on each reflection measurement separately and
thus completely ignores any knowledge that might
have been acquired prior to the current measurement.
This is surprising considering the great impact
ascribed to experience in all aspects of life. More
specifically, statistical methods are available to separ-
ate the effects of random measurement errors from
systematic factors, as well as to extract from data sets
information which can be used to judge the quality
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